The Axiom of Choice

ثبت نشده
چکیده

We propose that failures of the axiom of choice, that is, surjective functions admitting no sections, can be reasonably classified by means of invariants borrowed from algebraic topology. We show that cohomology, when defined so that its usual exactness properties hold even in the absence of the axiom of choice, is adequate for detecting failures of this axiom in the following sense. If a set X, viewed as a discrete space, has trivial first cohomology for all coefficient groups, then every J-indexed family of nonempty sets has a choice function. We also obtain related results when the coefficient groups are required to be abelian or well-orderable. In particular, we show that, if all discrete spaces have trivial first cohomology for all abelian coefficient groups, then the axiom of choice holds. Introduction. The axiom of choice, in one of its many equivalent forms, asserts that, for any surjective function p, from a set Y onto a set X, there exists a section, i.e., a map s: X -» Y with/) ° s = idx. A formally similar concept, the existence (or, more often, nonexistence) of continuous sections for continuous surjections, is one of the central concerns of algebraic topology, and topologists have created an impressive arsenal of sophisticated tools for analyzing it. It therefore seems reasonable to try to use these tools to describe the ways in which the axiom of choice can fail. The sets and functions that are relevant to the axiom of choice can be viewed as topological spaces and continuous functions, and thus brought formally within the domain of algebraic topology, by simply giving all of the sets the discrete topology. An obvious difficulty with this project is that the homotopy, homology, and cohomology groups of discrete spaces all vanish, under the usual definitions, in all positive dimensions, whether or not the axiom of choice holds. One can circumvent this difficulty by using more exotic invariants, such as A-theory, but we shall adopt a more radical approach. We shall argue, in §1, that the usual definitions of cohomology are appropriate only in the presence of the axiom of choice; in its absence they fail to satisfy some simple exactness conditions. We therefore propose to adopt a definition of cohomology due to Giraud [3] which has the expected exactness properties even if the axiom of choice is false. With this definition, or indeed with any definition having a certain (rather tiny) amount of exactness, we can at least make a start on the project of using cohomology to describe failures of the axiom of Received by the editors October 7, 1981 and, in revised form, September 15, 1982. 1980 Mathematics Subject Classification. Primary 03E25, 55N99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On characterizations of the fully rational fuzzy choice functions

In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.

متن کامل

On Tychonoff's type theorem via grills

‎Let ${X_{alpha}:alphainLambda}$ be a collection of topological spaces‎, ‎and $mathcal {G}_{alpha}$ be a grill on $X_{alpha}$ for each $alphainLambda$‎. ‎We consider Tychonoffrq{}s type Theorem for $X=prod_{alphainLambda}X_{alpha}$ via the above grills and a natural grill on $X$ ‎related to these grills, and present a simple proof to this theorem‎. ‎This immediately yields the classical theorem...

متن کامل

9. the Axiom of Choice and Zorn’s Lemma

§9.1 The Axiom of Choice We come now to the most important part of set theory for other branches of mathematics. Although infinite set theory is technically the foundation for all mathematics, in practice it is perfectly valid for a mathematician to ignore it – with two exceptions. Of course most of the basic set constructions as outlined in chapter 2 (unions, intersections, cartesian products,...

متن کامل

Arrow's Axiom and Full Rationality for Fuzzy Choice Functions

A classical result for crisp choice functions shows the equivalence between Arrow axiom and the property of full rationality. In this paper we study a fuzzy form of Arrow axiom formulated in terms of the subsethood degree and of the degree of equality (of fuzzy sets). We prove that a fuzzy choice function verifies Fuzzy Arrow Axiom if and only if it is (fuzzy) full rational. We also show that t...

متن کامل

THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES

In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived

متن کامل

The Axiom of Choice and Zorn’s Lemma

function on A is thus a choice of an element of the variable set A at each stage; in other words, a choice function on A is just a variable (or global) element of A . The axiom of choice (AC) asserts that if each member of a family A is nonempty, then there is a choice function on A . Metaphorically, then, the axiom of choice asserts that any family of sets with an element at each stage has a v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009